Abella logo (small)

picalc.thm

Specification "processes_terms". % Definition of canals and processes /*Define is_canal : pt -> prop by nabla x, is_canal x. Define is_proc : pt -> prop by is_proc null ; is_proc (nu P) := nabla x, is_proc (P x) ; is_proc (par P Q) := is_proc P /\ is_proc Q ; nabla x y, is_proc (out x y) ; nabla x y z, is_proc (out2 x y z) ; nabla x, is_proc (in x (P x)) := nabla x y, is_proc (P x y) ; nabla x, is_proc (in2 x (P x)) := nabla x y z, is_proc (P x y z).*/ % Definition of structural equivalence on processes Define str_ker : pt -> pt -> prop , str_eq : pt -> pt -> prop by str_ker (par P null) P ; str_ker (par null P) P ; str_ker P (par P null) ; str_ker P (par null P) ; str_ker (nu (x\ null)) null ; str_ker null (nu (x\ null)) ; str_ker (par P Q) (par Q P) ; str_ker (par (par P Q) R) (par P (par Q R)) ; str_ker (par P (par Q R)) (par (par P Q) R) ; str_ker (nu (x\par P (Q x))) (par P (nu Q)) ; str_ker (nu (x\par (P x) Q)) (par (nu P) Q) ; str_ker (par P (nu Q)) (nu (x\par P (Q x))) ; str_ker (par (nu P) Q) (nu (x\par (P x) Q)) ; str_ker (nu (x\ nu (P x))) (nu (y\ nu (x\ (P x y)))) ; str_eq P P ; str_eq P Q := str_ker P Q ; str_eq (nu P) (nu Q) := nabla x, str_eq (P x) (Q x) ; str_eq (par P R) (par Q R) := str_eq P Q ; str_eq (par P Q) (par P R) := str_eq Q R ; str_eq P R := exists Q, str_eq P Q /\ str_eq Q R. /* str_ker is symmetrical */ Theorem str_ker_sym : forall P Q, str_ker P Q -> str_ker Q P. intros. case H1. search. search. search. search. search. search. search. search. search. search. search. search. search. search. /* str_eq is symmetrical */ Theorem str_eq_sym : forall P Q, str_eq P Q -> str_eq Q P. induction on 1. intros. case H1. search. apply str_ker_sym to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H3. apply IH to H2. search. /* P is equivalent to nu x P if x is not in P */ Theorem nu_gen : forall P, str_eq P (nu x\P). intros. unfold 20. exists nu x\par P null. search. %Definition of reduction Define red_ker_tensor : pt -> pt -> pt -> prop , red_tensor : pt -> pt -> prop , red_ker_exp : pt -> pt -> pt -> prop , red_exp : pt -> pt -> prop , red : pt -> pt -> prop by nabla x y z, red_ker_tensor (out2 x y z) (in2 x (P x y z)) (P x y z y z) ; nabla x y z, red_ker_tensor (in2 x (P x y z)) (out2 x y z) (P x y z y z) ; red_ker_tensor (par P Q) R (par S Q) := red_ker_tensor P R S ; red_ker_tensor (par P Q) R (par P S) := red_ker_tensor Q R S ; red_ker_tensor (nu P) Q (nu R) := nabla x, red_ker_tensor (P x) Q (R x) ; red_ker_tensor P (par Q R) (par S R) := red_ker_tensor P Q S ; red_ker_tensor P (par Q R) (par Q S) := red_ker_tensor P R S ; red_ker_tensor P (nu Q) (nu R) := nabla x, red_ker_tensor P (Q x) (R x) ; red_tensor (par P Q) R := red_ker_tensor P Q R ; red_tensor (par P1 Q) (par P2 Q) := red_tensor P1 P2 ; red_tensor (par P Q1) (par P Q2) := red_tensor Q1 Q2 ; red_tensor (nu P1) (nu P2) := nabla x, red_tensor (P1 x) (P2 x) ; nabla x y, red_ker_exp (out x y) (in x (P x y)) (par (P x y y) (in x (P x y))) ; nabla x y, red_ker_exp (in x (P x y)) (out x y) (par (P x y y) (in x (P x y))) ; red_ker_exp (par P Q) R (par S Q) := red_ker_exp P R S ; red_ker_exp (par P Q) R (par P S) := red_ker_exp Q R S ; red_ker_exp (nu P) Q (nu R) := nabla x, red_ker_exp (P x) Q (R x) ; red_ker_exp P (par Q R) (par S R) := red_ker_exp P Q S ; red_ker_exp P (par Q R) (par Q S) := red_ker_exp P R S ; red_ker_exp P (nu Q) (nu R) := nabla x, red_ker_exp P (Q x) (R x) ; red_exp (par P Q) R := red_ker_exp P Q R ; red_exp (par P1 Q) (par P2 Q) := red_exp P1 P2 ; red_exp (par P Q1) (par P Q2) := red_exp Q1 Q2 ; red_exp (nu P1) (nu P2) := nabla x, red_exp (P1 x) (P2 x) ; red P Q := red_tensor P Q ; red P Q := red_exp P Q. /* null cannot communicate (tensor and exp)*/ Theorem red_ker_tensor_null_cases : forall P Q, red_ker_tensor null P Q -> false. induction on 1. intros. case H1. apply IH to H2. apply IH to H2. apply IH to H2. Theorem red_ker_exp_null_cases : forall P Q, red_ker_exp null P Q -> false. induction on 1. intros. case H1. apply IH to H2. apply IH to H2. apply IH to H2. /*no new names appear in communication (red_ker_tensor red_tensor red_ker_exp and red_exp)*/ Theorem red_ker_tensor_no_new_names : forall P Q (R : pt -> pt), nabla x, red_ker_tensor P Q (R x) -> exists S, nabla x, S = R x. induction on 1. intros. case H1. search. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. Theorem red_tensor_no_new_names : forall P (Q : pt -> pt), nabla x, red_tensor P (Q x) -> exists R, nabla y, R = Q y. induction on 1. intros. case H1. backchain red_ker_tensor_no_new_names with x = n1. apply IH to H2 with x = n1. search. apply IH to H2 with x = n1. search. apply IH to H2 with x = n1. search. Theorem red_ker_exp_no_new_names : forall P Q (R : pt -> pt), nabla x, red_ker_exp P Q (R x) -> exists S, nabla x, S = R x. induction on 1. intros. case H1. search. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. Theorem red_exp_no_new_names : forall P (Q : pt -> pt), nabla x, red_exp P (Q x) -> exists R, nabla y, R = Q y. induction on 1. intros. case H1. backchain red_ker_exp_no_new_names with x = n1. apply IH to H2 with x = n1. search. apply IH to H2 with x = n1. search. apply IH to H2 with x = n1. search. /*if P and Q communicate then also Q and P */ Theorem red_ker_tensor_par_sym : forall P Q R, red_ker_tensor P Q R -> red_ker_tensor Q P R. induction on 1. intros. case H1. search. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. Theorem red_ker_exp_par_sym : forall P Q R, red_ker_exp P Q R -> red_ker_exp Q P R. induction on 1. intros. case H1. search. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. apply IH to H2. search. /* two possible cases if reduction with P|Q as left process */ Theorem red_ker_tensor_par_cases : forall P Q R S, red_ker_tensor (par P Q) R S -> (exists T, red_ker_tensor P R T /\ str_eq S (par T Q)) \/ exists T, red_ker_tensor Q R T /\ str_eq S (par P T). induction on 1. intros. case H1. search. search. apply IH to H2. case H3. left. exists par T R1. split. search. unfold 20. exists par (par R1 T) Q. search. right. exists par T R1. split. search. unfold 20. exists par (par T R1) P. split. search. unfold 20. exists par (par P T) R1. search. apply IH to H2. case H3. search. right. exists par Q1 T. split. search. unfold 20. exists par Q1 (par P T). search. apply IH to H2. case H3. left. exists nu T. split. search. unfold 20. exists nu (x\par (T x) Q). search. search. Theorem red_ker_exp_par_cases : forall P Q R S, red_ker_exp (par P Q) R S -> (exists T, red_ker_exp P R T /\ str_eq S (par T Q)) \/ exists T, red_ker_exp Q R T /\ str_eq S (par P T). induction on 1. intros. case H1. search. search. apply IH to H2. case H3. left. exists par T R1. split. search. unfold 20. exists par (par R1 T) Q. search. right. exists par T R1. split. search. unfold 20. exists par (par T R1) P. split. search. unfold 20. exists par (par P T) R1. search. apply IH to H2. case H3. search. right. exists par Q1 T. split. search. unfold 20. exists par Q1 (par P T). search. apply IH to H2. case H3. left. exists nu T. split. search. unfold 20. exists nu (x\par (T x) Q). search. search. /* one possible case if reduction with nu P as left process */ Theorem red_ker_tensor_nu_cases : forall P Q R, red_ker_tensor (nu P) Q R -> exists S, nabla x, red_ker_tensor (P x) Q (S x) /\ str_eq R (nu S). induction on 1. intros. case H1. search. apply IH to H2. exists x\par (S1 x) R1. intros. split. search. unfold 20. exists par (nu S1) R1. search. apply IH to H2. search. apply IH to H2. search. Theorem red_ker_exp_nu_cases : forall P Q R, red_ker_exp (nu P) Q R -> exists S, nabla x, red_ker_exp (P x) Q (S x) /\ str_eq R (nu S). induction on 1. intros. case H1. search. apply IH to H2. exists x\par (S1 x) R1. intros. split. search. unfold 20. exists par (nu S1) R1. search. apply IH to H2. search. apply IH to H2. search. /* no possible communication without the communicating channel name */ Theorem red_ker_tensor_out2_no_com_case : forall P Q, nabla a b c, red_ker_tensor (out2 a b c) (P b c) (Q a b c) -> false. induction on 1. intros. case H1. apply IH to H2. apply IH to H2. apply IH to H2. Theorem red_ker_exp_out2_case : forall P Q, nabla a b c, red_ker_exp (out2 a b c) (P a b c) (Q a b c) -> false. induction on 1. intros. case H1. apply IH to H2. apply IH to H2. apply IH to H2. Theorem red_ker_exp_in2_case : forall P Q R, nabla a, red_ker_exp (in2 a (P a)) (Q a) (R a) -> false. induction on 1. intros. case H1. apply IH to H2. apply IH to H2. apply IH to H2. Theorem red_ker_exp_in_no_com_case : forall P Q R, nabla a, red_ker_exp (in a (P a)) Q (R a) -> false. induction on 1. intros. case H1. apply IH to H2. apply IH to H2. apply IH to H2. Theorem red_ker_tensor_in_case : forall P Q R, nabla a, red_ker_tensor (in a (P a)) (Q a) (R a) -> false. induction on 1. intros. case H1. apply IH to H2. apply IH to H2. apply IH to H2.