
Reasoning in Abella about Structural
Operational Semantics Specifications

Andrew Gacek1 Dale Miller2 Gopalan Nadathur1

1Department of Computer Science and Engineering
University of Minnesota

2INRIA Saclay - Île-de-France
& LIX/École polytechnique

LFMTP’08
June 23, 2008



Preview

λ-calculus
π-calculusF<:

sequent calculus

specification logic

meta-logic



Two-level logic approach

Originally advocated by McDowell & Miller [ToCL02]

Benefits
I clean separation between specification and reasoning
I features of each logic can be tailored to needs

(e.g., executable vs rich)
I allows formal meta-theorems about specification logic
I allows for different specification logics



Specification logic: hH2

Second-order hereditary Harrop formulas (hH2) provide a
simple and expressive logic for specification

∀m, n, a, b[of m (arr a b) ∧ of n a ⊃ of (app m n) b]

∀r , a, b[∀x [of x a ⊃ of (r x) b] ⊃ of (abs a r) (arr a b)]

This logic is a subset of the logic behind λProlog

of (app M N) B :-
of M (arr A B), of N A.

of (abs A R) (arr A B) :-
pi x\ of x A => of (R x) B.

In fact, an efficient implementation of λProlog also exists:
http://teyjus.cs.umn.edu/

http://teyjus.cs.umn.edu/


Meta-logic: G

Features
I λ-tree syntax
I ∇-quantifier for generic judgments
I induction over natural numbers
I recursive definitions



∇ quantifier: generic judgments

Miller & Tiu “Generic Judgments” [LICS03, ToCL05]
Tiu “LGω” [LFMTP06]

∇x .F means F has a generic proof—one which depends on
the freshness, but not the form of x

∀x .F ⊃ ∇x .F ∇x .F 6⊃ ∀x .F

∇x .∇y .F ≡ ∇y .∇x .F

∇x .F ≡ F if x does not appear in F

These structural rules allow a treatment of ∇ based on nominal
constants which make quantification implicit



Representation technique

Technique
We represent bound variables with λ-terms and “free variables”
with nominal constants (∇)

Benefits
I α-equivalence and substitution built-in for bound variables
I equivariance built-in for free variables



Role of definitions in G

Logically, definitions for atomic predicates are used to introduce
atomic judgments on the left and right sides of a sequent

I on the right, this corresponds to backchaining
I on the left, this corresponds to case-analysis

member A (A :: L) , >
member A (B :: L) , member A L

For us, definitions serve two purposes
I encode the semantics of the specification logic
I encode properties of specifications which are relevant to

reasoning



Encoding hH2 in G

seqN L G encodes that G is provable in hH2 from the
hypotheses L with at most height N

seqN L 〈A〉 , member A L

seq(s N) L (B ∧ C) , seqN L B ∧ seqN L C

seq(s N) L (A ⊃ B) , seqN (A :: L) B

seq(s N) L (∀B) , ∇x .seqN L (B x)

seq(s N) L 〈A〉 , ∃b.prog A b ∧ seqN L b

Example prog clause:
prog (of (app M N) B) (〈of M (arr A B)〉 ∧ 〈of N A〉) , >



Theorems about typing

Notation: LG abbreviates ∃n.nat n ∧ seqn L G
When L is nil , we write simply G

Type substitution theorem:

∀L, t1, t2, a, b.∇x .

(((of x a) :: L)〈of (t1 x) b〉) ∧ (L〈of t2 a〉) ⊃
(L〈of (t1 t2) b〉)

Context permutation lemma:
∀L1, L2, t , b. (L1 〈of t c〉) ∧ permute L1 L2 ⊃ (L2 〈of t c〉)



Theorems about seq

Contexts admit weakening, contraction, and permutation

subset L1 L2 , ∀X .member X L1 ⊃ member X L2

∀L1, L2, G. (L1 G) ∧ subset L1 L2 ⊃ (L2 G)

Instantiation for specification logic ∀ quantifier

∀L, G. (∇x .(L x)(G x)) ⊃ ∀T .(L T )(G T )

Discharging assumptions (cut admissibility)

∀L, A, G. (A :: LG) ∧ (L〈A〉) ⊃ (LG)



Implicit properties of specifications

∀t , a1, a2.( 〈of t a1〉) ∧ ( 〈of t a2〉) ⊃ a1 = a2

∀L, t , a1, a2.(L〈of t a1〉) ∧ (L〈of t a2〉) ⊃ a1 = a2

∀L, t , a1, a2.cntx L ∧ (L〈of t a1〉) ∧ (L〈of t a2〉) ⊃ a1 = a2

cntx L should enforce
I L = (of x1 a1) :: (of x2 a2) :: . . . :: (of xn an) :: nil
I Each xi is atomic
I Each xi is unique



Extended form of definitions
Definitional clauses now take the form

∀~x .(∇~z.H) , B

That is, we permit ∇ quantification over the head

Examples
(∇x .name x) , >

∀E . (∇x .fresh x E) , >

∀E , V . (∇x .subst (E x) x V (E V )) , >

cntx nil , >
∀L, A. (∇x .cntx ((of x A) :: L)) , cntx L



Abella

Abella (Gacek 2008) is an interactive, tactics-based
implementation of G which focuses on the two-level logic
approach and hides most of the supporting machinery

Proofs done with Abella
I determinacy and type preservation of various evaluation

strategies
I POPLmark 1a, 2a
I cut admissibility for a sequent calculus
I Church-Rosser property for λ-calculus
I Tait-style weak normalizability proof

http://abella.cs.umn.edu/

http://abella.cs.umn.edu/


Key parts of weak normalizability proof

The logical relation

reduce M i , ( 〈of M i〉) ∧ halts M

reduce M (arr A B) , ( 〈of M (arr A B)〉) ∧ halts M ∧
∀N.(reduce N A ⊃ reduce (app M N) B)

Substitution and freshness results

subst nil M M , >
(∇x .subst ((of x A) :: L) (R x) M) ,

∃V . reduce V A ∧ ( 〈value V 〉) ∧ subst L (R V ) M



Related Work

Locally nameless representation
A first-order representation with de Bruijn indices for bound
variables and names for free variables [Aydemir et. al. PoPL08]

Nominal logic approach
A formalization of bound and free variable names in an existing
theorem prover (Isabelle/HOL) [Urban and Tasson CADE04]

Twelf
An expressive specification logic (LF) with a relatively weak
meta-logic (M+

2 ) [Schürmann and Pfenning CADE98]



Conclusions

Benefits of a two-level logic approach

I clean separation between specification and reasoning
I features of each logic can be tailored to needs

(e.g., executable vs rich)
I allows formal meta-theorems about specification logic
I allows for different specification logics

Moreover, we have found this approach very practical

Future work
I richer (co)induction in the meta-logic
I alternate specification logics, e.g., linear
I proof search, focusing, automation
I encoding other parts of the specification logic, e.g., types


