
A Framework for Specifying, Prototyping, and
Reasoning about Computational Systems

Andrew Gacek

Department of Computer Science and Engineering

University of Minnesota

PhD Defense

September 8, 2009

1

Motivation

We are interested in a framework for developing formal systems

Some example formal systems:

• Evaluation and typing in a programming language

• Provability in a logic

• Behavior in a concurrency system

A framework should support:

• Speci�cation, prototyping, reasoning

• Working with objects with variable binding structure

2

Our Approach to Building a Framework

A logic-based approach:

• A speci�cation logic which encodes formal systems through

logical formulas

• Prototyping via a computational interpretation of the

speci�cation logic

• A reasoning logic which can internalize the speci�cation logic

and be used to prove properties of speci�cations

A higher-order approach:

• Both logics incorporate the λ-calculus in their term structure

so we can represent binding

• They contain logical devices for analyzing such structure

3

Contributions

• The logic G for reasoning about speci�cations

• Abella: an implementation of G which incorporates the

two-level logic approach to reasoning

• Rich examples constructed in Abella which verify the power of

G and the usefulness and practicality of the two-level logic

approach to reasoning

4

Example: Mini-ML

Mini-ML Syntax

a ::= int | a → a

t ::= x | t t | (fn x:a => t)

Mini-ML Evaluation

t ⇓ v means t evaluates to v

(fn x:a => r) ⇓ (fn x:a => r)

m ⇓ (fn x:a => r) r [x := n] ⇓ v

m n ⇓ v

5

Reasoning about Mini-ML

Theorem (Determinacy of Evaluation)

If t ⇓ v and t ⇓ w then v = w

Proof.
Induction on the derivation of t ⇓ v

Proceed by cases,

• t and v are both (fn x:a => r)

Must be that w is (fn x:a => r)

• t is m n

• Must have m ⇓ (fn x:a => r) and r [x := n] ⇓ v

• Must have m ⇓ (fn x:b => s) and s[x := n] ⇓ w

• By induction r = s, and thus by induction v = w

6

A Higher-order Abstract Syntax Representation

Object level binding can be represented with meta-level abstraction

Constants for Mini-ML

int :: type

arrow :: type → type → type

app :: term → term → term

fun :: type → (term → term) → term

Example

fn x : int => fn y : int => x

fun int (λx . fun int (λy . x))

Binding issues are now treated in the meta-level

7

Basic Structure for Reasoning

• Formulas over expressions from the simply-typed λ-calculus

• Atomic formulas encode object system judgments

• Relationships between judgments can be expressed with logical

formulas

• The formal system provides a means for deriving sequents of

the form:

H1, . . . ,Hn −→ C

8

Some Core Rules of the Logic

Γ,B −→ B
id

Γ −→ B B, Γ −→ C

Γ −→ C
cut

Γ,⊥ −→ C
⊥L

Γ −→ > >R

Γ,Bi −→ C

Γ,B1 ∧ B2 −→ C
∧Li

Γ −→ B Γ −→ C
Γ −→ B ∧ C

∧R

Γ −→ B Γ,D −→ C

Γ,B ⊃ D −→ C
⊃L

Γ,B −→ C

Γ −→ B ⊃ C
⊃R

Γ,B[h/x] −→ C

Γ,∃x .B −→ C
∃L

Γ −→ B[t/x]

Γ −→ ∃x .B ∃R

9

De�nitions

The syntax of de�nitions: ∀~x .H(~x) , B(~x)

Atomic formulas are interpreted as �xed-points of such de�nitions

eval (fun A R) (fun A R) , >
eval (app M N) V , ∃A.∃R. eval M (fun A R) ∧ eval (R N) V

We can encode this in a single de�nitional clause:

eval T V , (∃A,R. T = (fun A R) ∧ V = (fun A R)) ∨
(∃M,N,A,R. T = (app M N) ∧

eval M (fun A R) ∧ eval (R N) V)

10

Logical Rules for De�nitions

Let p be de�ned by

∀~x .p ~x , B p ~x

Γ,B p ~t −→ C

Γ, p ~t −→ C
defL

Γ −→ B p ~t

Γ −→ p ~t
defR

We also have rules for induction and co-induction for appropriate

de�nitions

11

Formally Proving Determinacy of Evaluation

Theorem
∀t, v ,w . (eval t v ∧ eval t w) ⊃ v = w

Proof.
Apply rules for ∀, ∧, and ⊃
eval t v , eval t w −→ v = w

Case analysis on eval t v

• t = v = (fun a r)

eval (fun a r) w −→ (fun a r) = w

Case analysis on eval (fun a r) w

−→ (fun a r) = (fun a r)

• t = (app m n) . . .

12

Dynamic Aspects of Binding

Consider a typing judgment for Mini-ML

x : a ∈ Γ
Γ ` x : a

Γ ` m : a → b Γ ` n : a
Γ ` m n : b

Γ, x : a ` r : b

Γ ` (fn x:a => r) : a → b
x /∈ dom(Γ)

of Γ X A , member (X : A) Γ

of Γ (app M N) B , ∃A. of Γ M (arrow A B) ∧ of Γ N A

of Γ (fun A R) (arrow A B) , ∇x . of ((x : A) :: Γ) (R x) B

13

Some Properties of the ∇ Quanti�er

∇x .F introduces a fresh �variable name� for x

We have the following structural properties for ∇:

∇x .∇y .F ≡ ∇y .∇x .F

∇x .F ≡ F if x does not appear in F

If we allow ∇ quanti�cation at a type, then we assume there are

in�nitely many fresh names at that type

14

Logical Rules for the ∇ Quanti�er

B[a/x], Γ −→ C

∇x .B, Γ −→ C
∇L

Γ −→ B[a/x]

Γ −→ ∇x .B
∇R

a is a nominal constant not appearing in B

The treatment of nominal constants requires permutations of

nominal constants to be considered in the equivalence of formulas

In particular, we change the initial rule to

Γ,B −→ B ′ id , if B = π.B ′

15

Typing Example with ∇

of Γ X A , member (X : A) Γ

of Γ (app M N) B , ∃A. of Γ M (arrow A B) ∧ of Γ N A

of Γ (fun A R) (arrow A B) , ∇x . of ((x : A) :: Γ) (R x) B

...
−→ member (c : int) ((d : int) :: (c : int) :: nil)

−→ of ((d : int) :: (c : int) :: nil) c int

−→ ∇x .of ((x : int) :: (c : int) :: nil) c int

−→ of ((c : int) :: nil) (fun int (λy . c)) (arrow int int)

−→ ∇x . of ((x : int) :: nil) (fun int (λy . x)) (arrow int int)

−→ of nil (fun int (λx . fun int (λy . x))) (arrow int (arrow int int))

16

Reasoning about Type Uniqueness

∀t, a, b. (of nil t a ∧ of nil t b) ⊃ a = b

∀Γ, t, a, b. (of Γ t a ∧ of Γ t b) ⊃ a = b

∀Γ, t, a, b. (cntx Γ ∧ of Γ t a ∧ of Γ t b) ⊃ a = b

cntx Γ should enforce

• Γ = (x1 : a1) :: (x2 : a2) :: . . . :: (xn : an) :: nil

• Each xi is atomic

• Each xi is unique

De�nitions can serve to capture such meta-level properties

cntx nil , >
cntx ((X : A) :: L) , �X atomic and not occurring in L� ∧ cntx L

17

Analyzing Occurrences of Nominal Constants

We introduce the device of nominal abstraction:

(λx1 · · ·λxn.s) D t

This holds exactly when there exist nominal constants c1, . . . , cn
such that (λx1 · · ·λxn.s) is equal to (λc1 · · ·λcn.t)

Examples

• �X is atomic�

(λz .z) D X

• �X is atomic and does not occur in L�

(λz .fresh z L) D fresh X L

18

Nominal Abstraction as a Modular Extension of Equality

Γ −→ t = t
=R

{Γ[θ] −→ C [θ] | all θ such that (s = t)[θ]}
s = t, Γ −→ C

=L

Γ −→ s D t
DR, if s D t holds

{Γ[[θ]] −→ C [[θ]] | all θ such that (s D t)[[θ]]}
s D t, Γ −→ C

DL

·[[·]] is a generalized notion of substitution which respects the scope

of nominal constants

19

Summary of the Logic G

We have a logic with . . .

• simply-typed λ-terms for representation

• atomic formulas for encoding judgments

• �xed-point de�nitions for encoding rules

• induction (and co-induction) over appropriate �xed-point

de�nitions

• ∇ quanti�er for introducing fresh names

• nominal abstraction for analyzing occurrences of names

20

Cut and Cut-elimination

Γ −→ B B, Γ −→ C

Γ −→ C
cut

Cut is useful for. . .

• using lemmas during reasoning

• enabling shorter proofs

• allowing �exible proof construction

Cut is problematic for. . .

• proving the consistency of our logic

• designing automatic proof search

The best solution is to show cut-elimination

21

How to Prove Cut-elimination in General

To show that cut can be eliminated, we provide a syntactic

procedure that eliminates instances cut

Π1

Γ −→ B1

Π2

Γ −→ B2

Γ −→ B1 ∧ B2
∧R

Π
B1, Γ −→ C

B1 ∧ B2, Γ −→ C
∧L1

Γ −→ C
cut

Π1

Γ −→ B1

Π
B1, Γ −→ C

Γ −→ C
cut

The di�culty is then showing that this procedure always terminates

22

Proving Cut-elimination for G

Tiu and Momigliano prove cut-elimination for Linc− (a subset of G)
using a notion of parametric reducibility for derivations that is

based on the Girard's proof of strong normalizability for System F

A key lemma in this proof is:

• If Γ −→ C has a proof then Γ[θ] −→ C [θ] has a simpler proof

G expands on Linc− with ∇-quanti�cation, nominal constants, and

nominal abstraction

The following two lemmas are key:

• If Γ −→ C has a proof then 〈~π〉.Γ −→ π.C has the same proof

• If Γ −→ C has a proof then Γ[[θ]] −→ C [[θ]] has a simpler proof

Then Tiu and Momigliano's proof extends to cut-elimination for G

23

Adequacy

How do we connect results in G to results about the object system?

• We show a bijection between the expressions of the object

system and their representation as terms in G

• We then show an �if and only if� relationship between

judgments of the object system and their encoding as atomic

formulas in G

Adequacy means that this kind of connection exists between an

object system and its encoding in a logic

Cut-elimination plays an essential role here since it restricts the sort

of proofs we have to consider

24

Using Adequacy (Example)

Suppose we have proven

∀T ,V ,A. (eval T V ∧ of nil T A) ⊃ of nil V A (1)

Theorem
If t ⇓ v and ` t : a then ` v : a

Proof.

• By adequacy we know −→ eval ptq pvq and

−→ of nil ptq paq have proofs in G
• Using these with (1) and various rules of G (particularly cut)

we can construct a proof of −→ of nil pvq paq

• By adequacy we know ` v : a

25

A Speci�cation Logic

∆,A G

∆ A ⊃ G

∆ G [c/x]

∆ ∀x .G

∆ G1[~t/~x] · · · ∆ Gm[~t/~x]

∆ A

where ∀~x .(G1 ⊃ · · · ⊃ Gm ⊃ A′) ∈ ∆ and A′[~t/~x] = A

Proofs in this logic re�ect computations in many formal systems

∀m, n, a, b.(of m (arrow a b) ⊃ of n a ⊃ of (app m n) b)

∀r , a, b.((∀x .of x a ⊃ of (r x) b) ⊃ of (fun a r) (arrow a b))

26

The Two-level Logic Approach to Reasoning

The speci�cation logic sequent ∆, L G is encoded as the atomic

formula seq pLq pGq

seq L (imp A G) , seq (A :: L) G

seq L (all B) , ∇x .seq L (B x)

seq L A , member A L

seq L A , ∃b.prog A b ∧ seq L b

Where prog encodes the formulas of ∆:

prog (of (fun A R) (arrow A B))

(all λx .(imp (of x A) (of (R x) B))) , >

27

Bene�ts of the Two-level Logic Approach to Reasoning

We can formally prove properties of seq once, and use them as

lemmas about particular speci�cations

Monotonicity

∀L,K ,G . (∀X .member X L ⊃ member X K) ⊃ seq L G ⊃ seq K G

Instantiation
∀L,G . ∇x . seq (L x) (G x) ⊃ ∀t. seq (L t) (G t)

Cut admissibility

∀L,A,G . seq (A :: L) G ⊃ seq L A ⊃ seq L G

28

Implementation

Abella is an interactive, tactics-based implementation of the

reasoning logic which focuses on the two-level logic approach to

reasoning and hides most of the supporting machinery

• http://abella.cs.umn.edu

• Open source and freely available

• Includes documentation, walkthroughs, and live examples

• Released in February 2008

• Hundreds of downloads so far

29

Successful Applications

• Determinacy, type preservation, and equivalence of various

evaluation strategies

• POPLmark Challenge 1a, 2a

• Cut admissibility for a sequent calculus with quanti�ers

• Properties of bisimulation in the π-calculus

• Church-Rosser property for λ-calculus

• Contributed by Randy Pollack

• Substitution for Canonical LF

• Contributed by Todd Wilson

• The �triple-8� and �double-3� proofs

30

Statement of the Triple-8 Lemma
Theorem subst_m&r : forall Tx Ty,

stype Tx -> stype Ty ->

forall Tx$ Ty$, {subt Tx$ Tx} -> {subt Ty$ Ty} ->

(forall Xs N L L' M M` M', nabla x y, %%%% m vs. m (y x) %%%%

vctx Xs -> tm m Xs N -> {Xs |- subst_m Tx$ L N L'} ->

{Xs, var x |- subst_m Ty$ (y\ M x y) (L x) (M` x)} -> {Xs, var y |- subst_m Tx$ (x\ M x y) N (M' y)} ->

exists M~, {Xs |- subst_m Tx$ M` N M~} /\ {Xs |- subst_m Ty$ M' L' M~}) /\

(forall Xs N L L' R M` T` R', nabla x y, %%%% rm vs. rr (y x) %%%%

vctx Xs -> tm m Xs N -> {Xs |- subst_m Tx$ L N L'} ->

{Xs, var x |- subst_rm Ty$ (y\ R x y) (L x) (M` x) T`} -> {Xs, var y |- subst_rr Tx$ (x\ R x y) N (R' y)} ->

exists M~, {Xs |- subst_m Tx$ M` N M~} /\ {Xs |- subst_rm Ty$ R' L' M~ T`}) /\

(forall Xs N L L' R R` M' T', nabla x y, %%%% rr vs. rm (y x) %%%%

vctx Xs -> tm m Xs N -> {Xs |- subst_m Tx$ L N L'} ->

{Xs, var x |- subst_rr Ty$ (y\ R x y) (L x) (R` x)} -> {Xs, var y |- subst_rm Tx$ (x\ R x y) N (M' y) T'} ->

exists M~, {Xs |- subst_rm Tx$ R` N M~ T'} /\ {Xs |- subst_m Ty$ M' L' M~}) /\

(forall Xs N L L' R R` R', nabla x y, %%%% rr vs. rr (y x) %%%%

vctx Xs -> tm m Xs N -> {Xs |- subst_m Tx$ L N L'} ->

{Xs, var x |- subst_rr Ty$ (y\ R x y) (L x) (R` x)} -> {Xs, var y |- subst_rr Tx$ (x\ R x y) N (R' y)} ->

exists R~, {Xs |- subst_rr Tx$ R` N R~} /\ {Xs |- subst_rr Ty$ R' L' R~}) /\

(forall Xs N L L' M M` M', nabla x y, %%%% m vs. m (x y) %%%%

vctx Xs -> tm m Xs N -> {Xs |- subst_m Ty$ L N L'} ->

{Xs, var x |- subst_m Tx$ (y\ M x y) (L x) (M` x)} -> {Xs, var y |- subst_m Ty$ (x\ M x y) N (M' y)} ->

exists M~, {Xs |- subst_m Ty$ M` N M~} /\ {Xs |- subst_m Tx$ M' L' M~}) /\

(forall Xs N L L' R M` T` R', nabla x y, %%%% rm vs. rr (x y) %%%%

vctx Xs -> tm m Xs N -> {Xs |- subst_m Ty$ L N L'} ->

{Xs, var x |- subst_rm Tx$ (y\ R x y) (L x) (M` x) T`} -> {Xs, var y |- subst_rr Ty$ (x\ R x y) N (R' y)} ->

exists M~, {Xs |- subst_m Ty$ M` N M~} /\ {Xs |- subst_rm Tx$ R' L' M~ T`}) /\

(forall Xs N L L' R R` M' T', nabla x y, %%%% rr vs. rm (x y) %%%%

vctx Xs -> tm m Xs N -> {Xs |- subst_m Ty$ L N L'} ->

{Xs, var x |- subst_rr Tx$ (y\ R x y) (L x) (R` x)} -> {Xs, var y |- subst_rm Ty$ (x\ R x y) N (M' y) T'} ->

exists M~, {Xs |- subst_rm Ty$ R` N M~ T'} /\ {Xs |- subst_m Tx$ M' L' M~}) /\

(forall Xs N L L' R R` R', nabla x y, %%%% rr vs. rr (x y) %%%%

vctx Xs -> tm m Xs N -> {Xs |- subst_m Ty$ L N L'} ->

{Xs, var x |- subst_rr Tx$ (y\ R x y) (L x) (R` x)} -> {Xs, var y |- subst_rr Ty$ (x\ R x y) N (R' y)} ->

exists R~, {Xs |- subst_rr Ty$ R` N R~} /\ {Xs |- subst_rr Tx$ R' L' R~}).

31

Conclusions & Future Work

Summary of contributions:

• The logic G and nominal abstraction

• The Abella system and its incorporation of the two-level logic

approach to reasoning

• Rich examples which validate G, Abella, and the two-level logic

approach to reasoning

Future directions:

• Alternative speci�cation logics

• Stronger forms of de�nitions and (co-)inductive principles

• Improving the usability of Abella

• An integrated toolset

32

