A Framework for Specifying, Prototyping, and Reasoning about Computational Systems

Andrew Gacek
Department of Computer Science and Engineering University of Minnesota
PhD Defense
September 8, 2009

Motivation

We are interested in a framework for developing formal systems
Some example formal systems:

- Evaluation and typing in a programming language
- Provability in a logic
- Behavior in a concurrency system

A framework should support:

- Specification, prototyping, reasoning
- Working with objects with variable binding structure

Our Approach to Building a Framework

A logic-based approach:

- A specification logic which encodes formal systems through logical formulas
- Prototyping via a computational interpretation of the specification logic
- A reasoning logic which can internalize the specification logic and be used to prove properties of specifications

A higher-order approach:

- Both logics incorporate the λ-calculus in their term structure so we can represent binding
- They contain logical devices for analyzing such structure

Contributions

- The logic \mathcal{G} for reasoning about specifications
- Abella: an implementation of \mathcal{G} which incorporates the two-level logic approach to reasoning
- Rich examples constructed in Abella which verify the power of \mathcal{G} and the usefulness and practicality of the two-level logic approach to reasoning

Example: Mini-ML

Mini-ML Syntax

$$
\begin{aligned}
& a::=\operatorname{int} \mid a \rightarrow a \\
& t::=\mathrm{x}|t t|(\mathrm{fn} \mathrm{x}: a \Rightarrow t)
\end{aligned}
$$

Mini-ML Evaluation

$t \Downarrow v$ means t evaluates to v

$$
\overline{(f n} \mathrm{x}: a \Rightarrow r) \Downarrow(\mathrm{fn} \mathrm{x}: a \Rightarrow r)
$$

$$
\frac{m \Downarrow(f \mathrm{n} \mathrm{x}: a \Rightarrow r) \quad r[\mathrm{x}:=n] \Downarrow v}{m n \Downarrow v}
$$

Reasoning about Mini-ML

Theorem (Determinacy of Evaluation)
If $t \Downarrow v$ and $t \Downarrow w$ then $v=w$
Proof.
Induction on the derivation of $t \Downarrow v$
Proceed by cases,

- t and v are both ($f n \mathrm{x}: a=>r$)

Must be that w is ($f n \mathrm{x}: a=>r$)

- t is $m n$
- Must have $m \Downarrow$ (fn x:a $=>r$) and $r[\mathrm{x}:=n] \Downarrow v$
- Must have $m \Downarrow$ (fn $\mathrm{x}: b=>s$) and $s[\mathrm{x}:=n] \Downarrow w$
- By induction $r=s$, and thus by induction $v=w$

A Higher-order Abstract Syntax Representation

Object level binding can be represented with meta-level abstraction
Constants for Mini-ML

$$
\begin{aligned}
& \text { int }:: \text { type } \\
& \text { arrow }:: \text { type } \rightarrow \text { type } \rightarrow \text { type } \\
& \text { app }:: \text { term } \rightarrow \text { term } \rightarrow \text { term }
\end{aligned}
$$

$$
\text { fun }:: \text { type } \rightarrow(\text { term } \rightarrow \text { term }) \rightarrow \text { term }
$$

Example

$$
\begin{aligned}
& \text { fn } \mathrm{x}: \text { int }=>\text { fn } \mathrm{y}: \text { int } \Rightarrow>\mathrm{x} \\
& \text { fun int }(\lambda x . \text { fun int }(\lambda y . x))
\end{aligned}
$$

Binding issues are now treated in the meta-level

Basic Structure for Reasoning

- Formulas over expressions from the simply-typed λ-calculus
- Atomic formulas encode object system judgments
- Relationships between judgments can be expressed with logical formulas
- The formal system provides a means for deriving sequents of the form:

$$
H_{1}, \ldots, H_{n} \longrightarrow C
$$

Some Core Rules of the Logic

$$
\begin{array}{cc}
\stackrel{\Gamma, B \longrightarrow B}{ } \text { id } & \stackrel{\Gamma \longrightarrow B B, \Gamma \longrightarrow C}{\Gamma \longrightarrow C} c u t \\
\overline{\Gamma, \perp \longrightarrow C} \perp \mathcal{L} & \overrightarrow{\Gamma \longrightarrow \top} \top \mathcal{R} \\
\frac{\Gamma, B_{i} \longrightarrow C}{\Gamma, B_{1} \wedge B_{2} \longrightarrow C} \wedge \mathcal{L}_{i} & \stackrel{\Gamma \longrightarrow B \Gamma \longrightarrow C}{\Gamma \longrightarrow B \wedge C} \wedge \mathcal{R} \\
\frac{\Gamma \longrightarrow B\ulcorner, D \longrightarrow C}{\Gamma, B \supset D \longrightarrow C} \supset \mathcal{L} & \frac{\Gamma, B \longrightarrow C}{\Gamma \longrightarrow B \supset C} \supset \mathcal{R} \\
\frac{\Gamma, B[h / x] \longrightarrow C}{\Gamma, \exists x . B \longrightarrow C} \exists \mathcal{L} & \frac{\Gamma \longrightarrow B[t / x]}{\Gamma \longrightarrow \exists x . B} \exists \mathcal{R}
\end{array}
$$

Definitions

The syntax of definitions: $\forall \vec{x} \cdot H(\vec{x}) \triangleq B(\vec{x})$
Atomic formulas are interpreted as fixed-points of such definitions
eval (fun A R) (fun A R) $\triangleq \top$
eval $(\operatorname{app} M N) V \triangleq \exists A . \exists R$. eval $M(f u n A R) \wedge$ eval $(R N) V$
We can encode this in a single definitional clause:

$$
\begin{aligned}
& \text { eval } T V \triangleq(\exists A, R \cdot T=(\text { fun } A R) \wedge V=(f u n A R)) \vee \\
&(\exists M, N, A, R \cdot T=(\operatorname{app} M N) \wedge \\
&e v a l M(f u n A R) \wedge \text { eval }(R N) V)
\end{aligned}
$$

Logical Rules for Definitions

Let p be defined by

$$
\forall \vec{x} \cdot p \vec{x} \triangleq B p \vec{x}
$$

$$
\frac{\Gamma, B p \vec{t} \longrightarrow C}{\Gamma, p \vec{t} \longrightarrow C} \operatorname{defL} \quad \frac{\Gamma \longrightarrow B p \vec{t}}{\Gamma \longrightarrow p \vec{t}} \operatorname{defR}
$$

We also have rules for induction and co-induction for appropriate definitions

Formally Proving Determinacy of Evaluation

Theorem
$\forall t, v, w$. (eval $t v \wedge e v a l t w) \supset v=w$
Proof.
Apply rules for \forall, \wedge, and \supset
eval $t v$, eval $t w \longrightarrow v=w$
Case analysis on eval $t v$

- $t=v=(f u n$ a $r)$
eval (fun a r) $w \longrightarrow($ fun a $r)=w$
Case analysis on eval (fun a r) w

$$
\longrightarrow(f u n \text { a } r)=(\text { fun a } r)
$$

- $t=(a p p m n) \ldots$

Dynamic Aspects of Binding

Consider a typing judgment for Mini-ML

$$
\begin{gathered}
\frac{\mathrm{x}: a \in \Gamma}{\Gamma \vdash \mathrm{x}: a} \quad \frac{\Gamma \vdash m: a \rightarrow b}{\Gamma \vdash m n: b} \\
\left.\frac{\Gamma, \mathrm{x}: a \vdash r: b}{\Gamma \vdash(\mathrm{fn} \mathrm{x}: a \rightarrow \mathrm{r}} \mathrm{r}\right): a \rightarrow b \\
\mathrm{x} \notin \operatorname{dom}(\Gamma)
\end{gathered}
$$

of $\Gamma X A \triangleq$ member $(X: A) \Gamma$
of $\Gamma(\operatorname{app} M N) B \triangleq \exists A$. of 「 $M(\operatorname{arrow} A B) \wedge$ of 「 N A
of $\Gamma($ fun $A R)($ arrow $A B) \triangleq \nabla x$. of $((x: A):: \Gamma)(R x) B$

Some Properties of the ∇ Quantifier

$\nabla x . F$ introduces a fresh "variable name" for x

We have the following structural properties for ∇ :

$$
\begin{gathered}
\nabla x \cdot \nabla y \cdot F \equiv \nabla y \cdot \nabla x \cdot F \\
\nabla x . F \equiv F \quad \text { if } x \text { does not appear in } F
\end{gathered}
$$

If we allow ∇ quantification at a type, then we assume there are infinitely many fresh names at that type

Logical Rules for the ∇ Quantifier

$$
\frac{B[a / x], \Gamma \longrightarrow C}{\nabla x \cdot B, \Gamma \longrightarrow C} \nabla \mathcal{L} \quad \frac{\Gamma \longrightarrow B[a / x]}{\Gamma \longrightarrow \nabla x \cdot B} \nabla \mathcal{R}
$$

a is a nominal constant not appearing in B

The treatment of nominal constants requires permutations of nominal constants to be considered in the equivalence of formulas

In particular, we change the initial rule to

$$
\overline{\Gamma, B \longrightarrow B^{\prime}} \text { id, if } B=\pi \cdot B^{\prime}
$$

Typing Example with ∇

```
of \Gamma X A\triangleq member ( }X:A)
of \Gamma (app M N)B\triangleq\existsA. of Г M (arrow A B)^ of ГN A
of \Gamma (fun A R) (arrow A B)\triangleq\nablax. of ((x:A)::\Gamma) (Rx)B
```

 \(\longrightarrow\) member \((c:\) int \()((d:\) int \()::(c:\) int \()::\) nil \()\)
 \(\longrightarrow\) of \(((d:\) int \()::(c:\) int \()::\) nil \() c\) int
 \(\longrightarrow \nabla x\) of \(((x:\) int \()::(c:\) int \()::\) nil \() c\) int
 \(\longrightarrow\) of \(((c:\) int \()::\) nil) (fun int \((\lambda y . c))\) (arrow int int)
 \(\longrightarrow \nabla x\). of \(((x:\) int \()::\) nil) (fun int \((\lambda y . x))\) (arrow int int)
 \longrightarrow of nil (fun int $(\lambda x$. fun int $(\lambda y, x))$) (arrow int (arrow int int))

Reasoning about Type Uniqueness

$$
\begin{gathered}
\forall t, a, b .(\text { of nil } t a \wedge \text { of nil } t b) \supset a=b \\
\forall \Gamma, t, a, b .(o f \Gamma t a \wedge o f \Gamma t b) \supset a=b \\
\forall \Gamma, t, a, b .(c n t x \Gamma \wedge o f \Gamma t a \wedge o f \Gamma t b) \supset a=b
\end{gathered}
$$

cntx 「 should enforce

- $\Gamma=\left(x_{1}: a_{1}\right)::\left(x_{2}: a_{2}\right):: \ldots:\left(x_{n}: a_{n}\right):: n i l$
- Each x_{i} is atomic
- Each x_{i} is unique

Definitions can serve to capture such meta-level properties cntx nil $\triangleq \top$
cntx $((X: A):: L) \triangleq " X$ atomic and not occurring in $L " \wedge c n t x L$

Analyzing Occurrences of Nominal Constants

We introduce the device of nominal abstraction:

$$
\left(\lambda x_{1} \cdots \lambda x_{n} . s\right) \unrhd t
$$

This holds exactly when there exist nominal constants c_{1}, \ldots, c_{n} such that $\left(\lambda x_{1} \cdots \lambda x_{n} . s\right)$ is equal to $\left(\lambda c_{1} \cdots \lambda c_{n} . t\right)$

Examples

- " X is atomic"

$$
(\lambda z . z) \unrhd X
$$

- "X is atomic and does not occur in L "
$(\lambda z$.fresh $z L) \unrhd$ fresh $X L$

Nominal Abstraction as a Modular Extension of Equality

$$
\begin{gathered}
\stackrel{\Gamma \longrightarrow t=t}{ }=\mathcal{R} \\
\frac{\{\Gamma[\theta] \longrightarrow C[\theta] \mid \text { all } \theta \text { such that }(s=t)[\theta]\}}{s=t, \Gamma \longrightarrow C}=\mathcal{L} \\
\Gamma \longrightarrow s \unrhd t \unrhd \mathcal{R}, \text { if } s \unrhd t \text { holds } \\
\frac{\{\lceil\llbracket \theta \rrbracket \longrightarrow C \llbracket \theta \rrbracket \mid \text { all } \theta \text { such that }(s \unrhd t) \llbracket \theta \rrbracket\}}{s \unrhd t, \Gamma \longrightarrow C} \unrhd \mathcal{L}
\end{gathered}
$$

$\cdot \llbracket \cdot \rrbracket$ is a generalized notion of substitution which respects the scope of nominal constants

Summary of the Logic \mathcal{G}

We have a logic with...

- simply-typed λ-terms for representation
- atomic formulas for encoding judgments
- fixed-point definitions for encoding rules
- induction (and co-induction) over appropriate fixed-point definitions
- ∇ quantifier for introducing fresh names
- nominal abstraction for analyzing occurrences of names

Cut and Cut-elimination

$$
\frac{\Gamma \longrightarrow B B, \Gamma \longrightarrow C}{\Gamma \longrightarrow C} c u t
$$

Cut is useful for. . .

- using lemmas during reasoning
- enabling shorter proofs
- allowing flexible proof construction

Cut is problematic for...

- proving the consistency of our logic
- designing automatic proof search

The best solution is to show cut-elimination

How to Prove Cut-elimination in General

To show that cut can be eliminated, we provide a syntactic procedure that eliminates instances cut

$$
\begin{gathered}
\frac{\Gamma \xrightarrow{\Pi_{1}} B_{1} \Gamma \stackrel{\Pi_{2}}{\longrightarrow} B_{2}}{\Gamma B_{1} \wedge B_{2}} \wedge \mathcal{R} \quad \frac{B_{1}, \Gamma \xrightarrow{\Pi} C}{B_{1} \wedge B_{2}, \Gamma \longrightarrow C} \\
\Gamma \longrightarrow \mathcal{L}_{1} \\
\text { cut } \\
\stackrel{\Gamma \xrightarrow{\Pi_{1}} B_{1} \quad B_{1}, \Gamma \xrightarrow{\Pi} C}{\Gamma \longrightarrow C} \text { cut }
\end{gathered}
$$

The difficulty is then showing that this procedure always terminates

Proving Cut-elimination for \mathcal{G}

Tiu and Momigliano prove cut-elimination for Linc ${ }^{-}$(a subset of \mathcal{G}) using a notion of parametric reducibility for derivations that is based on the Girard's proof of strong normalizability for System F

A key lemma in this proof is:

- If $\Gamma \longrightarrow C$ has a proof then $\Gamma[\theta] \longrightarrow C[\theta]$ has a simpler proof
\mathcal{G} expands on Linc ${ }^{-}$with ∇-quantification, nominal constants, and nominal abstraction

The following two lemmas are key:

- If $\Gamma \longrightarrow C$ has a proof then $\langle\vec{\pi}\rangle . \Gamma \longrightarrow \pi . C$ has the same proof
- If $\Gamma \longrightarrow C$ has a proof then $\Gamma \llbracket \theta \rrbracket \longrightarrow C \llbracket \theta \rrbracket$ has a simpler proof

Then Tiu and Momigliano's proof extends to cut-elimination for \mathcal{G}

Adequacy

How do we connect results in \mathcal{G} to results about the object system?

- We show a bijection between the expressions of the object system and their representation as terms in \mathcal{G}
- We then show an "if and only if" relationship between judgments of the object system and their encoding as atomic formulas in \mathcal{G}

Adequacy means that this kind of connection exists between an object system and its encoding in a logic

Cut-elimination plays an essential role here since it restricts the sort of proofs we have to consider

Using Adequacy (Example)

Suppose we have proven

$$
\begin{equation*}
\forall T, V, A .(\text { eval } T V \wedge \text { of nil } T A) \supset \text { of nil } V A \tag{1}
\end{equation*}
$$

Theorem
If $t \Downarrow v$ and $\vdash t: a$ then $\vdash v: a$
Proof.

- By adequacy we know $\longrightarrow e v a l\ulcorner t\urcorner\ulcorner v\urcorner$ and \longrightarrow of nil $\ulcorner t\urcorner\ulcorner a\urcorner$ have proofs in \mathcal{G}
- Using these with (1) and various rules of \mathcal{G} (particularly cut) we can construct a proof of \longrightarrow of nil $\ulcorner v\urcorner\ulcorner a\urcorner$
- By adequacy we know $\vdash v: a$

A Specification Logic

$$
\begin{gathered}
\frac{\Delta, A \Vdash G}{\Delta \Vdash A \supset G} \quad \frac{\Delta \Vdash G[c / x]}{\Delta \Vdash \forall x \cdot G} \\
\frac{\Delta \Vdash G_{1}[\vec{t} / \vec{x}] \quad \cdots \quad \Delta \Vdash G_{m}[\vec{t} / \vec{x}]}{\Delta \Vdash A} \\
\text { where } \forall \vec{x} \cdot\left(G_{1} \supset \cdots \supset G_{m} \supset A^{\prime}\right) \in \Delta \text { and } A^{\prime}[\vec{t} / \vec{x}]=A
\end{gathered}
$$

Proofs in this logic reflect computations in many formal systems

$$
\begin{aligned}
& \forall m, n, a, b .(\text { of } m(\text { arrow } a b) \supset \text { of } n a \supset \text { of }(a p p m n) b) \\
& \forall r, a, b .((\forall x . o f \times a \supset \text { of }(r x) b) \supset \text { of }(\text { fun a } r)(\text { arrow a } b))
\end{aligned}
$$

The Two-level Logic Approach to Reasoning

The specification logic sequent $\Delta, L \Vdash G$ is encoded as the atomic formula seq $\ulcorner L\urcorner\ulcorner G\urcorner$

```
seq}L(impAG)\triangleq\operatorname{seq}(A::L)
seq L (all B) }\quad\triangleq\nablax.seq L (Bx
seq L A \triangleq member A L
seq LA }\quad\triangleq\existsb.prog Ab\wedge seq Lb
```

Where prog encodes the formulas of Δ :

```
prog (of (fun A R) (arrow A B))
    (all \lambdax.(imp (of x A) (of (Rx)B)))\triangleq T
```


Benefits of the Two-level Logic Approach to Reasoning

We can formally prove properties of seq once, and use them as lemmas about particular specifications

Monotonicity
$\forall L, K, G .(\forall X$.member $X L \supset$ member $X K) \supset$ seq $L G \supset$ seq $K G$
Instantiation
$\forall L, G . \nabla x \cdot \operatorname{seq}(L x)(G x) \supset \forall t . \operatorname{seq}(L t)(G t)$
Cut admissibility
$\forall L, A, G . \operatorname{seq}(A:: L) G \supset \operatorname{seq} L A \supset \operatorname{seq} L G$

Implementation

Abella is an interactive, tactics-based implementation of the reasoning logic which focuses on the two-level logic approach to reasoning and hides most of the supporting machinery

- http://abella.cs.umn.edu
- Open source and freely available
- Includes documentation, walkthroughs, and live examples
- Released in February 2008
- Hundreds of downloads so far

Successful Applications

- Determinacy, type preservation, and equivalence of various evaluation strategies
- POPLmark Challenge 1a, 2a
- Cut admissibility for a sequent calculus with quantifiers
- Properties of bisimulation in the π-calculus
- Church-Rosser property for λ-calculus
- Contributed by Randy Pollack
- Substitution for Canonical LF
- Contributed by Todd Wilson
- The "triple-8" and "double-3" proofs

Statement of the Triple-8 Lemma

```
Theorem subst_m&r : forall Tx Ty,
    stype Tx -> stype Ty ->
    forall Tx$ Ty$, {subt Tx$ Tx} -> {subt Ty$ Ty} ->
        (forall Xs N L L' M M' M', nabla x y, %%%%%m vs. m (y x) %%%%
            vctx Xs -> tm m Xs N -> {Xs |- subst_m Tx$ L N L'} ->
            {Xs, var x |- subst_m Ty$(y\Mxy) (L x) (M` x)} -> {Xs, var y |- subst_m Tx$ (x\M M y)N (M' y)} ->
            exists M~, {Xs |- subst_m Tx$ M` N M~} \\ {Xs |- subst_m Ty$ M' L' M~})
            (forall Xs N L L' R M` T' R', nabla x y, %%%% rm vs. rr (y x) %%%%
            vctx Xs -> tm m Xs N -> {Xs |- subst_m Tx$ L N L'} ->
            {Xs, var x |- subst_rm Ty$(y\Rxy) (L x) (M' x) T'} -> {Xs, var y |- subst_rr Tx$ (x\Rx y)N (R' y)} ->
            exists M}\mp@subsup{M}{}{\prime},{Xs |- subst_m Tx$ M` N M~} \ {Xs |- subst_rm Ty$ R' L' M~ T`}) \\
    (forall Xs N L L' R R' M' T', nabla x y, %%%% rr vs. rm(y x) %%%%
        vctx Xs -> tm m Xs N -> {Xs |- subst_m Tx$ L N L'} ->
        {Xs, var x |- subst_rr Ty$(y\Rxy)(L x) (R` x)} -> {Xs, var y |- subst_rm Tx$ (x\Rxy) N (M' y) T'} ->
        exists M~, {Xs |- subst_rm Tx$ R` N M M T'} /\ {Xs |- subst_m Ty$ M' L' M M })
    (forall Xs N L L' R R' R', nabla x y, %%%% rr vs. rr (y x) %%%%
        vctx Xs -> tm m Xs N -> {Xs |- subst_m Tx$ L N L'} ->
        {xs, var x |- subst_rr Ty$(y\Rxy) (L x) ( R' x)} -> {Xs, var y |- subst_rr Tx$ (x\Rxy) N (R' y)} ->
        exists R~, {Xs |- subst_rr Tx$ R` N R~} /\ {Xs |- subst_rr Ty$ R' L' R~})
    (forall Xs N L L' M M ' M', nabla x y, %%%% m vs. m(x y) %%%%%
        vctx Xs -> tm m Xs N -> {Xs |- subst_m Ty$ L N L'} ->
        {Xs, var x |- subst_m Tx$(y\M x y) (L x) (M` x)} -> {Xs, var y |- subst_m Ty$(x\M x y) N (M' y)} ->
        exists M}\mp@subsup{M}{}{~},{xs |- subst_m Ty$ M` N N M~} \\ {Xs |- subst_m Tx $ M` L' M M })
    (forall Xs N L L' R M` T' R', nabla x y, %%%% rm vs. rr (x y) %%%%
        vctx Xs -> tm m Xs N -> {Xs |- subst_m Ty$ L N L'} ->
        {Xs, var x |- subst_rm Tx$(y\Rxy) (L x) (M` x) T'} -> {Xs, var y l- subst_rr Ty$(x\Rxy)N(R'y)} ->
        exists M~, {Xs |- subst_m Ty$ M` N M~} \\ {Xs |- subst_rm Tx$ R' L' M~ T`}) \
    (forall Xs N L L' RR' M' T', nabla x y, %%%% rr vs. rm (x y) %%%%
        vctx Xs -> tm m Xs N -> {Xs |- subst_m Ty$ L N L'} ->
        {Xs, var x |- subst_rr Tx$(y\ R x y) (L x) (R` x)} -> {Xs, var y l- subst_rm Ty$ (x\Rx y) N (M' y) T'} ->
```



```
    (forall Xs N L L' R R' R', nabla x y, %%%%% rr vs. rr (x y) %%%%
        vctx Xs -> tm m Xs N -> {Xs |- subst_m Ty$ L N L'} ->
        {Xs, var x |- subst_rr Tx$(y\Rxy) (L x) ( R'x)} -> {Xs, var y |- subst_rr Ty$(x\Rxy) N (R' y)} ->
        exists R~, {Xs |- subst_rr Ty$ R` N R~} /\ {Xs |- subst_rr Tx$ R' L' R~}).
```


Conclusions \& Future Work

Summary of contributions:

- The logic \mathcal{G} and nominal abstraction
- The Abella system and its incorporation of the two-level logic approach to reasoning
- Rich examples which validate \mathcal{G}, Abella, and the two-level logic approach to reasoning

Future directions:

- Alternative specification logics
- Stronger forms of definitions and (co-)inductive principles
- Improving the usability of Abella
- An integrated toolset

